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ABSTRACT

Segmentation is a fundamental step in quantifying characteristics, such as volume, shape, and orientation of cells
and/or tissue. However, quantification of these characteristics still poses a challenge due to the unique properties
of microscopy volumes. This paper proposes a 2D segmentation method that utilizes a combination of adaptive
and global thresholding, potentials, z direction refinement, branch pruning, end point matching, and boundary
fitting methods to delineate tubular objects in microscopy volumes. Experimental results demonstrate that the
proposed method achieves better performance than an active contours based scheme.
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1. INTRODUCTION

Advances in fluorescence microscopy have enabled biologists to image deeper into tissue than previously achiev-
able [1], [2], [3]. Of increasing interest is the application of quantitative analysis to acquired 3D image stacks.
However, the volume of data makes manual quantification, especially of each cell or tissue, tedious and error-
prone. Thus, automated processing methods, especially image segmentation, become vital.

Segmentation of fluorescence microscopy images remains challenging due to the loss in contrast and resolution
by the significant scattering of light in biological tissue. For this reason, segmentation approaches that are
successful at distinguishing objects at the surface of tissue samples increasingly fail at depth. In addition,
boundaries of biological objects, which tend to be non rigid and tend to vary in shape and orientation, are not
always clearly and completely delineated by fluorescent probes. Moreover, the resolution along the z axis is
approximately 4 times less than along the x and y directions [4], [5].

There have been efforts to develop automatic segmentation methods for biomedical image data sets that
attempt to address these issues, that in general have relied on thresholding, the watershed algorithm [6], and
active contours [7]. Thresholding based methods are typically limited in their performance when the objects to
be segmented are not well-defined. Thus, thresholding is normally used in conjunction with other methods such
as gradient flow tracking [8] or the watershed technique [9]. Similarly, the watershed scheme is combined with
region splitting and merging method [10], since it tends to generate larger segmented regions than desired.

Alternatively, active contour methods [7] recursively deform an initial contour to fit a desired object based
on the minimization of an energy functional. However, the performance of active contour methods rely on the
initial contours chosen and can generate inaccurate segmentations. A method for addressing this issue suited for
microscopy data that uses the Poisson inverse gradient was proposed in [11]. To circumvent the dependence of the
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final outcome on the initial contour, [12] proposed integrating a background removal model with a region-based
active contour method that uses multiple contour initializations to perform segmentation. Alternatively [13]
proposed the use of random seed region-based active contours combined with multi-resolution, multi-scale, and
region-growing to achieve multidimensional segmentation. Furthermore, [14] proposed the use of active surfaces,
a 3D version of region-based active contours [7].

As indicated above, segmenting objects in biological images remains a challenging problem. This is further
compounded by the fact that these objects can change shape and orientation with depth. An example of this are
tubules, hollow biological tissues having tubular shape, that can be challenging for energy minimization based
techniques to delineate [15]. There has however been recent work focused on segmenting tubules from biomedical
images. In particular, [16], [17] proposed a minimal path based segmentation scheme that uses fast marching
techniques. Also [18] described a scheme using geodesic active contours to detect tubular structures, and [15]
used a combination of level set methods and the geodesic distance transform to segment multiple tubules.

In this paper, we describe a technique that segments 2D cross-sections of tubules in microscopy images using
a combination of adaptive and global thresholding, potentials, z direction refinement, branch pruning, end point
matching, and curve fitting. The aim here is to be able to segment the 2D cross-sections at various depths as
an initial step to 3D segmentation of these objects. The performance of the proposed technique is compared to
that of an active contours based method [7].
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Figure 1. Block diagram of the proposed segmentation technique.

2. PROPOSED SCHEME

As mentioned above the objective of this work is to segment tubular structures present in microscopy images.
Figure 1 highlights the various stages of the proposed technique. Representative images from two of the data sets
being processed are provided in Figures 4a and 4g. Figure 4a shows an image from a 3D volume of rat kidney
labeled with Hoechst 33342 (blue) and fluorescent phalloidin (red) dyes, whereas Figure 4g presents an image
from a 3D volume of rat kidney labeled with Hoechst 33342 (blue) and a fluorescent lectin (red) dye. Both data
sets were imaged using multiphoton fluorescence excitation microscopy [1], and in both cases the structures of
interest reside mostly in the red (R) component of the data. Thus, as shown in Figure 1, the R component of each
image is initially extracted. This is preceded however by an interpolation step where we use cubic interpolation
to compensate for the fact that the resolution along the z direction is smaller than along the x and y direction.

Figures 4b and 4h depict the R components of the images shown in Figures 4a and 4g, respectively. As can
be expected and observed both images have non-homogeneous intensities. Due to this non-homogeneity, we first
utilize an adaptive thresholding scheme [19] that obtains local thresholds T'(z,y) at each location (z,y) based
on a local neighborhood W centered at (x,y):

o =i [t (52 1)), w

where m(z,y) and s(x,y) are the empirical mean and variance of the pixel values within region W respectively,
k a tuning parameter, and R the dynamic range of s(z,y). The values of W, R, and k used in this paper are
different from those proposed in [19] and will be provided in Section 3.
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Due to the fluctuations in pixel intensities, adaptive thresholding produces false contours. To address this
problem, we modify T'(z,y) using a global threshold T to produce a final threshold T"(z,y) defined as:

T'(2,y) = maz(T(z,y), Tc). (2)

The value of T that effectively reduced the number of false contours, especially in dark regions, was empirically
determined. Applying T"(x,y) to each red channel Iz(x,y) produced a corresponding binary image B(x,y):

|1 if Ir(z,y) > T'(z,y)
B(x’w‘{ 0 ifIney) <oy )

We also investigated using edge detection methods such as the Canny operator [20] to detect object boundaries.
Due to the nature of the data, the Canny operator did not produce results as well as the modified adaptive
thresholding method used here.

B(xz,y) generally highlights object boundaries as well as lumen that appear as edges interior to an object, as
shown in Figures 4c and 4i, respectively. The objective is to retain the object boundaries only. This is achieved
by using potential functions and z direction refinement. We employ two different potential functions: potential
for position (Pp) and potential for occupancy (Pp), weighted by two coefficients A\; and Ay, respectively, to
create total potential Pr = A\ Pp + A2 Pp. This will be utilized to separate foreground and background regions.
The description of each potential function follows:

1. Potential for position, Pp.
Since B(z,y) contains unwanted edges, suppressing them should be necessary step. To do this, we first
stack all the binary images B(x,y) along the z direction to form a binary volume (V(z,y, 2)). Pp is then
obtained by convolving the binary volume with a 3D Gaussian filter h(z,y, 2):

Pp(x,y,z) = V(m,y,z)*h(m,y,z). (4)

The Gaussian filter used here is h(x,y,z) = \/(;7)3 exp (*W) and * represents 3D convolution.
Y

Since V(z,y, ) is binary, the value of Pp at each voxel is always between 0 and 1.

2. Potential for occupancy, Po.

Since B(z,y) highlights both objects and lumens, Pp is designed such that pixels on the outer boundaries
are assigned larger values and small values given to interior lumens. This is achieved by first labeling
B(xz,y) using 2D connected components with an 8-neighborhood. In this case a connected component
with an 8-neighborhood is a set of pixels connected horizontally, vertically, or diagonally, that have the
same characteristics or features such as belonging to the same edge. To distinguish the different connected
components, each component is assigned an unique label. Starting from an unlabeled non-zero pixel
in B(z,y), we assign the same label to all pixels that are connected to it within its 8-neighborhood.
In addition, the neighbors of all the labeled current pixel’s neighbors are given the same label and the
process repeated until all the connected neighbors have been identified. This is now considered a connected
component identified by a unique label. Once a single connected component has been identified, we locate
the next non-zero unlabeled pixel in raster scan order and assign a different label to all the pixels in its
associated neighborhood. The process of identifying and labeling another connected component is then
repeated. This is continued until all the non-zero pixels in B(x,y) have been labeled. At this stage all
the pixels in B(x,y) have been grouped into separate connected components that are identified by their
unique labels. In addition, the size (sc¢) of each connected component, which is defined to be the number
of pixels that constitute the connected component, as well as the locations of all the constituent pixels are
recorded. Moreover, the smallest bounding rectangle containing all the pixels of each connected component
is constructed for each connected component. The fraction, S, of how much each bounding rectangle is
occupied by its corresponding connected component’s pixels, defined as

52 sec, 5)
SBB
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where spp denotes the area of the bounding rectangle. The ratio S for each labeled connected component
is otained and normalized such that the smallest S from B(z,y) maps to 0 and the largest S maps to 1.
We assign Pp to have a large value when S is small and vice-versa so that the potential Py has relatively
larger value at pixels on tubule boundaries than pixels interior to the object. Thus, we define Pp to be
Po(z,y,z) =1— S at each z, y and z corresponding to the connected component’s location.

3. Total potential, Pr.
Once we obtain Pp and Pp, total potential (Pr) is obtained for each voxel location using

PT(I',y,Z):Alpp(x,y72)+)\gpo($7y,2)7 (6)

where A1 and A\ are non-negative weights such that A\; + Ay = 1. The value of weights A1, Ao are empirically
determined to be 0.25 and 0.75~respectively. The value of Py is thresholded using a threshold Tp to produce
a thresholded total potential Pr where

~ [ 1 i Pr(zy,2) > T
PT(%W){ 0 if Pr(x,y,2) <Tp ° "

It Pr = 1 the corresponding voxel is considered to be part of an object/tubule boundary. If however,
Pr = 0 then the voxel is deemed to be belonging to lumen. This combination of two potentials successfully
removes most of the lumen and retains boundary.

To further refine Pr, we employ z direction information. Object /tubules boundaries are generally continuous
and consistent along the z direction whereas lumen are not. We thus use a 1D Gaussian filter (1(2)) to convolve
Pr along the z direction:

Pp(z,y,2) = Pr(z,y,2) * ¥(2), (8)
where ¥(z) = \/2;7 exp (—%) Pr is then thresholded using threshold Tp to produce binary data. The

image obtained after applying the potentials and z direction refinement is denoted by B(x,y). The parameter
values that we use for the potentials and z direction refinement are provided in Section 3.

While the previous procedure removes interior edges, yet as seen from Figures 4d and 4j not all resulting
boundaries are fully connected and many have random protruding branches that are pruned through the following
procedure:

1. Create a morphological skeleton. In this case we define a morphological skeleton to be the outcome
of performing morphological thinning on B(x,y). In particular, morphological thinning is achieved by
iteratively performing morphological erosion using a 2 x 2 square structuring element to achieve a single-
pixel-width skeleton [21].

2. Identify end points and branch points along each boundary. An end point is a point that has one or fewer
neighbors in the morphological skeleton. A branch point is defined as a point that has 3 or more neighbors
in the morphological skeleton. Record the number of end points before branch pruning and denote it as
El’;_l where 7 is the number of branch pruning iterations.

3. Trace back a maximum of 7 edge pixels from each end point. While tracing back, obtain the locations of
the pixels on the traversed path and check whether they are branch points.

4. For each end point, retain all pixels on the back path if there are no branch points. However, if there is
a branch point among the pixels on the back path, then remove all pixels connecting the end point to the
branch point but keep the branch point.

5. Repeat for all end points and count the number of end points after branch pruning. Denote it as E;,.
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6. Perform branch pruning steps (2 — 5) iteratively until a stopping criterion is met. This criterion is based
on the relative change in number of end points at each iteration. In particular, define @ as

0o B -5
By

The iterative branch pruning is terminated when @ falls below 0.1.

(a) Before pruning small (b) After pruning small
branches branches
Figure 2. Example of pruning small branches from a morphological skeleton.

Figure 2 shows the outcome of applying the above procedure to the image in Figure 4d. As observed, small
branches are successfully removed.

The next step is to reconnect the entire boundary. This is accomplished as follows:

1. Identify all end points. This is done as described above.

2. Obtain the Euclidean distance between all pairs of end points. If two end points are closer than a certain
threshold 7p, they are considered to be points on a common boundary and need to be connected to close
the boundary. Such points are denoted as matching end points. In this paper, 7p = 35.

3. Having found all pairs of matching end points, obtain the “shortest path”, based on geodesic distance [22],
between any two matching end points while traversing that part of the boundary that already joins them.
Figure 3 depicts two examples of shortest paths between two end points. In the figure, the matching
end points are marked in red and the corresponding “shortest paths,” based on geodesic distance, are
highlighted in green.

(b)
Figure 3. Two “shortest paths” between two matching end points. The end points are indicated in red and the “shortest
paths” in green.

4. Find an ellipse that best (in the least square sense) fits the shortest path between the two matching end
points, while passing through the end points. This is formulated as a constrained least squares curve fitting
problem. In particular, using the general form for conic sections

axoX+2bxoy+cyoy+2dx+2fy+g=0, (9)
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where x and y are column vectors representing the x and y values of each pixel location on the shortest
path and o represents Hadamard product. Dividing both sides by a and re-arranging, we obtain Mp = q,
where M = [2xoy yoy 2x 2y 1|,p=[b/a c/a d/a f/a g/a]T7 and q = —x o x. Note that
1 is a vector whose entries are all 1. In addition, to ensure this formulation will form an ellipse we impose
b?> — 4ac = —1 as in [23] rather than imposing the general constraint > — 4ac < 0 . This leads to an
overdetermined system if all the points lying on the shortest path between the matching end points are
taken into account. Thus, to solve for the unknown coefficients in p, we find p that minimizes the squared
error 1||Mp — q||3, while ensuring that the ellipse passes through the end points. Thus, we pose this as

follows:
min 5[ Mp —qf3 (10)
subject to Gp=h (11)
b — dac = —1, (12)
2eYey Yoy 2Tey 2Weo 1
where G = 0Te0 oo 0 0
2T e, Ye, ygl 2T, 2Ye, 1
T
h = [-af -]

Here (Zcy, Yeo), (Teys Ye, ) are the locations of the two matching end points, ey and eq, respectively. Once
the coefficients have been found they are used to join the matching end points using an elliptical curve.

After having completed the above procedures, there remain some exceptions. They are:

1. The solution to the constrained optimization problem does not result in an ellipse, or
2. The elliptical arc between two matching end points extends beyond the image boundary, or

3. The elliptical arc between two matching end points interferes with boundaries already identified.

In these three cases, the matched end points are left unconnected.

In addition, there are some end points that do not belong to the same connected component, yet are within
a distance 7p of each other. Such points are joined by a straight line unless the line intersects another already
existing boundary. In the case of the latter, the points are left unconnected. Finally, a search is carried out for
all remaining unconnected end points. These are connected to the closest object boundary via a straight line
if the distance between the unconnected end points and closest object boundary is within 7p/2. In particular,
the straight line is extended in one of three directions: —45°, 0°, 45° relative to the direction of the end point.
However, if the distance is larger than 7 /2, the end points are left unconnected. The resulting image is denoted

by F(x,y).

3. EXPERIMENTAL RESULTS

The results of applying the proposed technique to two data sets with representative images shown in Figures 4a
and 4g, respectively, are given here. The first set of images (WSM) was comprised of 512 images each 512 x 512
pixels in size, while the second set (Lectin) consisted of 821 images each 640 x 640 pixels.

As previously indicated the structures of interest reside mostly in the red components shown in Figures 4b
and 4h, respectively. These were then thresholded as depicted in Figures 4c and 4j, respectively. In this case
the window W used for the first data set was 16 x 16 pixels in size, whereas it was 20 x 20 for the second set.
In addition, the value of R used was the maximum empirical variance and ensured that S(I—éy) < 1. Finally, the
value of the parameter k was empirically determined to be —0.1. Table 1 lists the various parameters used and
their corresponding values. Note that different values are used for different dataset. Again, the values used were
empirically determined.
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(e) F(z,y) 7 (f) F(z,y) over-
laid onto Ir(x,y)

(a) Input image (b) Red compo-
I(z,y) nent Ir(z,y)

(g) Input image (h) Red compo- i () B(z,y) (k) F(z,y) () F(z,y) over-
I(z,y) nent Ir(z,y) laid onto Ir(x,y)
Figure 4. Results of applying the proposed technique to the 81st image of the first data set, WSM (Top), and the 101st

image of the second data set, Lectin (Bottom).

Parameters | Description WSM | Lectin
k Sauvola’s parameter -0.1 —0.1
Ta Global threshold used to modify the local threshold 0 15
A1 Coefficient corresponding to Pp 0.25 0.25
A2 Coefficient corresponding to Po 0.75 0.75
Tp Threshold used for the total potential Py and z direction 0.8 0.8

refinement

o, Standard deviation used for z direction refinement 0.5 0.5
™D Matched end points distance threshold 35 40

Table 1. Parameters used in our proposed scheme.

As described above, the interiors were cleared out using connected component labeling and the boundaries
pruned of any protruding branches. The outcome of these two steps is depicted in Figures 4d and 4j, respectively.
Subsequently, the boundaries were closed. In Figures 4e and 4k red dots delineate the locations of all the
end points, cyan curves indicate boundaries that were closed using ellipse fitting based on constrained least
squares, green curves highlight the connection between two end points that do not belong to the same connected
component, and the yellow straight lines are the extensions from non-matched end points to the closest boundary.
The final boundaries are overlaid onto the original images as shown in Figures 4f and 41, respectively.

In Figure 5, we compare the results of the proposed scheme to the 2D region-based active contour technique
described in [7], when applied to images at various depths. The first and third rows exhibit the results of proposed
scheme whereas the second and the fourth rows show the corresponding results using [7]. The 2D region-based
active contour technique [7] needed 1000 iterations to converge to a solution as well as multiple circles to be used
as initial contours. Furthermore, compared to the proposed technique, it did not capture as many boundaries of
the various tubules. In particular, we observe that it successfully groups brighter regions in the images into one
large object, but fails to delineate smaller objects or any objects for that matter in the darker regions.

4. CONCLUSION AND FUTURE WORK

This paper describes an algorithm that segments tubular structures in microscopy images based on adaptive and
global thresholding, potentials, z direction refinement, branch pruning, end point matching, and boundary fitting.
Compared to a region-based active contour technique, the proposed scheme was more successful at segmenting
tubular structure in microscopy images. Future work will include extending this method to use region merging
to combine small regions, utilizing additional shape information to aid in the separation of tubular structures
that were joined together during the segmentation process, and extending the current technique to 3D.
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(b) 81st image of WSM (pro- (c) 131st image of WSM (pro-
posed) posed)

(g) 41st image of Lectin (pro- (h) 101st image of Lectin (pro- (i) 161st image of Lectin (pro-
posed) posed) posed)

(j) 41st image of Lectin ([7]) (k) 101st image of Lectin ([7]) (1) 161st image of Lectin ([7])

Figure 5. Comparison with 2D active contour at various depth.
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